Георг Кантор -- пример математика и логика, который в своем творчестве обращался как к анализу парадоксов, так и к построению и исследованию "монстров" причем на одном и том же примере. В 1883 году Кантор публикует свою работу "Über unendliche, lineare Punktmannigfaltigkeiten", в котором демонстрирует пример построения "монстра" -- множества точек, называемого сейчас множеством Кантора. Это множество образовано в результате бесконечного итерационного процесса, похожего на процесс построения кривой Коха (рис. 1.3.11). Кантор последовательно отбрасывал из отрезка единичной длины сначала среднюю часть, а потом средние части всех оставшихся фрагментов. Проделав эту процедуру бесконечное число раз, великий логик рассмотрел свойства получившегося множества точек -- так называемой канторовой пыли. Кантор показал, парадоксальность этого "монстра". Мощность получившегося множества точек оказалась равной мощности множества точек на отрезке.
В этом примере встретились парадокс и "монстр" -- "монстр" оказался иллюстрацией парадоксального понятия мощности множества, воплощением непонятной бесконечности. Кантор пытается понять бесконечность и строит концепцию для ее описания
Не случайным, с точки зрения изучения биографических совпадений, оказывается увлечение логикой Бернарда Больцано. В 1837 году Больцано пишет книгу "Попытка нового понимания логики", в которой он попытался ввести новую неформализованную "Про-Лейбницевскую" логику.
Попытки поиска оснований логики предпринимал и Джузеппе Пеано -- автор кривой Пеано, исследовавший в 80-90 годах XIX века понятия числа. Пеано интересовался рекурсивными схемами -- процедурами, с помощью которых можно определить понятие числа.
Работы Пеано оказали влияние на Бертрана Рассела, его взгляды периода "Принципов математики"
И "монстры" и парадоксы -- это контрпримеры, противоречащие существующим на данный момент парадигмам в сообществе ученых, частные случаи, разрушающие хорошо выстроенные научные представления.
Есть совпадения в отношении научного сообщества к "монстрам" и парадоксам. Удивление, испуг, растерянность, заменялись запретами на их применение и попытками создать новую теорию, свободную от "монстров" и парадоксов -- описать логически корректные и непротиворечивые основания математики.
Этот процесс был проанализирован Имре Лакатосом в его книге "Доказательства и опровержения". Лакатос назвал его "monster barring" - процессом "исключения монстров" - как некоторой позитивистской программы ухода от парадоксальности при исследовании геометрических и логико-математических объектов, построенных путем бесконечных рекуррентных процедур.
Книга "Принципы математики" Б. Рассела и А. Уайтхеда с этой точки зрения предстает как попытка исключения монстров, попытка найти непротиворечивые первые принципы, основания математики, свободные от рекурсий и бесконечных кругов, заселяющих логику "монстрами". Попытка, на взгляд Лакатоса, неудачная
Есть несколько научных и философских концепций, обращающихся одновременно и к математическим монстрам, и к логическим парадоксам.
Во-первых, это теория хаоса и концепция сложности (complexity), синергетическая парадигма, которые приводят парадоксы в качестве результата "линейного" мышления. "Монстры" в этих концепциях - формы нового, "нелинейного" мира.
Во-вторых, это концепция автопоэзиса, бурно развиваемая сейчас философами, биологами и социологами, основателями которой считаются чилийские биологи и эпистемологи Умберто Матурана и Франциско Варела4. Франциско Варела в своих работах приводил монстры и парадоксы в качестве моделей саморазвивающихся, самодостраивающихся автопоэтических систем5.
Многие статьи У. Матураны и Ф. Варелы присутствуют в ИНТЕРНЕТ. В качестве отправной точки можно сходить на сервер
www.synergetic.ru, где присутствуют обзоры и библиография работ.
Полный текст статьи здесьhttp://lit.lib.ru/w/wladislaw_t/